
Performance Analysis of Parallel Systems� Approaches and Open

Problems

Daniel A� Reed� Ruth A� Aydt Luiz DeRose Celso L� Mendes

Randy L� Ribler Eric Sha�er Huseyin Simitci Je�rey S� Vetter

Daniel R� Wells Shannon Whitmore

Ying Zhang

Department of Computer Science

University of Illinois

Urbana� Illinois ����� USA

Abstract

Parallel computing is rapidly evolving to include het�
erogeneous collections of distributed and parallel sys�
tems� Concurrently� applications are becoming in�
creasingly multidisciplinary with code libraries im�
plemented using diverse programming models� To
optimize the behavior of complex applications on
heterogeneous systems� performance analysis soft�
ware must also evolve� replacing post�mortem anal�
ysis with real�time� adaptive optimization� tightly
integrating compile�time analysis with performance
measurement and prediction� and supporting high�
modality visualization and software manipulation� In
this paper� we brie�y survey the state of the art in
each of these areas and sketch a series of open re�
search problems�

� Introduction

As parallel computing evolves from homogeneous par�
allel systems to distributed collections of heteroge�
nous systems �i�e�� the computational grid�� applica�
tion developers face new and more complex perfor�
mance tuning and optimization problems� Current
users of parallel systems often complain that it is

�This work was supported in part by the Defense Advanced
Research Projects Agency under DARPA contracts DABT���
���C���� �SIO Initiative�	 F����
����C�����	 and DABT���
���C���
� by the National Science Foundation under grants
NSF CDA ������
� and ASC ���
�
�
	 and by the Depart�
ment of Energy under contractsDOE B�������	W����
�ENG�
��	 and ��B��������

di�cult to achieve a high fraction of the theoreti�
cal performance peak � the time varying resources
of the computational grid further exacerbate these
problems� Moreover� the sensitivity of parallel system
performance to slight changes in application code� to�
gether with the large number of potential application
performance problems �e�g�� load balance� data local�
ity� or input	output� and continually evolving system
software� make application tuning complex and often
counter�intuitive�

At present� we have few� if any reliable tech�
niques for predicting application performance from

rst principles� Instead� we must exploit experimen�
tal techniques� making performance analysis subject
to the same constraints as other experimental sci�
ences� Furthermore� performance tools must be sim�
ple and intuitive� Unless compelled by circumstances�
most users are unwilling to invest great time and ef�
fort to learn the syntax and semantics of new perfor�
mance tools� they often view performance optimiza�
tion as an unavoidable evil� Hence� portability and
ease of use are critical to the acceptance of new per�
formance tools� Simply put� the goal of experimental
performance analysis is to provide insight into ap�
plication behavior and performance bottlenecks by
e�ciently capturing and intuitively presenting per�
formance data�

The remainder of this paper is organized as follows�
In x�� we begin by describing traditional approaches
to performance instrumentation and analysis� Fol�
lowing this� in x
 we outline a set of challenges and
research directions facing the performance analysis

�



community� including aggressive compile�time opti�
mization� domain�speci
c analyses� real�time adap�
tive performance control and steering� techniques for
reducing performance data volume� and performance
data immersion and direct manipulation within vir�
tual environments� Finally� x��x� discuss related
work and summarize our conclusions�

� Measurement and Analysis

Because performance analysis involves measurement�
it is prey to the same theoretical and pragmatic pit�
falls as other experimental sciences� In particular� it
must not unduly perturb the measured system� else
the experimental data will not re�ect the system�s
normal behavior� However� it must be su�ciently
detailed to capture the phenomena of interest� and
it must relate the measured data to a context that
enables the user to optimize performance�

��� Performance Instrumentation

Historically� performance instrumentation ap�
proaches have included counting and sampling�
interval timing� and event tracing� Conceptually�
each strikes a di�erent balance between instru�
mentation overhead� data volume� and detail� In
addition� each has multiple possible implementation
techniques� ranging from completely extrinsic �e�g��
an external hardware monitor that counts L� cache
misses via connections to a set of probe points�
to completely intrinsic �e�g�� inserted code in an
application program to compute a histogram of
procedure activation lifetimes��
By far the most common method of performance

instrumentation is program counter sampling� The
widely used UNIX prof and gprof ���� utilities peri�
odically sample the program counter and compute a
histogram of program counter locations� Because the
histogram bins correspond to procedure code frag�
ments and sampling occurs at known intervals� his�
togram bin height is an estimator of the amount of
time spent in a particular procedure�
Pro
ling depends on an external sampling task�

leading to coarse granularity and requiring total pro�
gram execution time to be su�ciently long to accu�
mulate a statistically meaningful sample set� More�
over� pro
lers often assume a simple mapping from
object code to the original source code� which is rarely
true on parallel systems with aggressive restructuring
compilers� we will return to this topic in x
��� Finally�

on parallel systems the code execution paths may be
di�erent on each processor �e�g�� due to data depen�
dent behavior�� requiring more complex mappings to
application code�
Event counting eliminates some of sampling�s lim�

itations� albeit with additional cost� Because count�
ing is not a statistical measure� the observed frequen�
cies are accurate� However� to obtain timing informa�
tion� one must periodically timestamp and record the
counts�
As the measured analog of sampling� interval tim�

ing combines counts with elapsed timemeasurements�
Rather than sampling the program counter periodi�
cally to compute the amount of time spent in code
fragments� interval timing brackets code fragments
with calls to a timing routine�
Unlike counting� which naturally abstracts the oc�

currence of speci
c events� or interval timing� which
abstracts the frequency of speci
c events� event trac�
ing generates a complete sequence of events� Hence�
event tracing is a more general instrumentation tech�
nique than either counting or interval timing� from
an event trace� one can compute counts or times �
the converse is not true�
The disadvantage of tracing is the potential in�

strumentation intrusion� Because each event must
be timestamped and recorded separately� the po�
tential data volume is large� and the input	output
requirements are substantial� Instrumenting proce�
dures to record entry and exit can easily generate ��
KB	second on a single processor if the mean proce�
dure activation lifetime is ��� microseconds and the
data associated with each event includes only a four
byte event identi
er and a four byte timestamp� On a
parallel system with hundreds of processors� the data
volume can approach �� MB	second � we will return
to this topic and possible solution techniques in x
��
In general� counting� timing� and tracing occupy

di�erent points along the continuum of detail and
measurement overhead� and no single instrumenta�
tion approach is appropriate in all cases� The choice
of a particular approach is dictated by the desired
information and the constraints of the underlying
instrumentation implementation � some measure�
ments are not feasible in some environments�

��� Performance Analysis

When large scale parallel systems 
rst emerged� sev�
eral research groups developed performance visual�
ization systems that displayed the dynamic behavior

�



of processors and communication networks� Exem�
plars of this work include Couch�s seminal Seecube
system ���� ParaGraph ����� and our own Hyperview
and Pablo toolkits ���� ����

Although widely used to develop applications on
early parallel systems� the increasingly complexity of
parallel systems exposed several limitations of these
toolkits� Perhaps the most obvious constraint was
their limited scalability� Performance environment
scalability implies not only that the environment
must be capable of capturing and analyzing data from
very large numbers of processors� but also that it
must be capable of presenting the data in ways that
are intuitive and instructive�

However� early visualization systems represented
the states of individual processors �e�g�� by a colored
square for each processor� and communication links
�e�g�� by communication network animations�� In
consequence� they were limited by workstation screen
real estate and do not scale to thousands of proces�
sors� In x
��� we will discuss hierarchical visualiza�
tion techniques that can accomodate large numbers
of processors�

Second� increasing software complexity� high�level
programming models �e�g�� data parallel and paral�
lel object� and heterogeneous� wide area computing
have all exacerbated performance analysis problems�
No longer can measured data be related to user code
without tight integration of performance measure�
ment systems with compilers and runtime systems
����

Third� repeated experience has shown that scien�
ti
c application software developers will eschew pow�
erful� but complex tools in favor of inferior� but eas�
ily understood tools� Unless compelled by circum�
stances� such users are unwilling to invest much time
and e�ort to learn the syntax and semantics of new
performance tools� they often view performance op�
timization as an unavoidable evil� Hence� portability
and ease of use are critical to the acceptance of new
performance tools�

Fourth� there are at least three classes of poten�
tial performance environment users� novice� interme�
diate� and expert� each with di�erent expectations�
Novice users know relatively little about parallel sys�
tem software or hardware� nor do they wish to learn
more than the minimum necessary to optimize the
performance of their application codes� In contrast�
intermediate users are willing to conduct performance
experiments and exercise a modicum of control over
the performance environment�s behavior� Finally� ex�

pert users are intimately acquainted with the parallel
architecture and system software and want broad lat�
itude to modify system components�

� Performance Challenges

Today� the de facto standard for performance instru�
mentation and analysis is application pro
ling with
post�mortem graphical display of performance bot�
tlenecks� Although adequate when �a� parallel codes
were written in sequential languages for homogeneous
parallel systems� �b� compilers generated object code
that directly re�ected source code control� and �c�
this code executed on a modest number of proces�
sors� this model is now woefully inappropriate for
current execution environments� Today� applications
are written in data parallel and object�oriented lan�
guages� compilers aggressively transform source code�
and the resulting object code executes on a large� dis�
tributed collection of heterogeneous parallel systems
with time varying loads�

In such an environment� performance instrumenta�
tion and analysis tools must invert compiler transfor�
mations to report measured performance in a source
code context and minimize total performance data
volume while still enabling users to interactively drill
down to identify performance problems on remote
systems� Moreover� they must accommodate execu�
tion heterogeneity and non�reproducible behavior� re�
placing post�mortem analysis with real�time analysis
and optimization� Below� we describe the challenges
implicit in such an approach and outline possible so�
lutions�

��� Aggressive Optimization

Performance variability and the e�ort required to
write explicitly parallel code have long limited the
widespread use of parallel systems� Data parallel lan�
guages� like High Performance Fortran �HPF� ����
and object�parallel models like parallel C��� have
been proposed to lessen the parallel programming
burden� Although higher level programming mod�
els can reduce programming e�ort and increase
code portability� they guarantee neither performance
portability across parallel architectures nor scalabil�
ity across problem sizes or number of processors�

Understanding performance problems and optimiz�
ing data parallel codes requires performance instru�
mentation and analysis tools that can relate dynamic






performance data to data parallel source code� Un�
fortunately� most current performance tools are tar�
geted at the collection and presentation of program
performance data when the parallelism and interpro�
cessor communication are explicit and the program
execution model closely mimics that in the source
code �i�e�� as is the case for message passing codes��

For data parallel languages like HPF� such instru�
mentation can only capture and present dynamic per�
formance data in terms of primitive operations �e�g��
communication library calls or DSM references� in
the compiler�generated code� However� aggressive
code restructuring and translation to a di�erent exe�
cution model can result in executable code that di�ers
markedly from an application developer�s model�

Moreover� complex� multidisciplinary applications
often involve code written using a variety of lan�
guages and programming models and executing on
multiple parallel architectures� To be e�ective� per�
formance tools must not only support data parallel
performance analysis� they must also support multi�
ple architectures and provide language independent
interfaces� allowing users to learn but a single set of
software navigation skills�
To support source�level performance analysis of

programs in data parallel languages� we believe com�
pilers and performance tools must cooperate to inte�
grate information about the program�s dynamic be�
havior with compiler knowledge of the mapping from
the low�level� explicitly parallel code to the high�
level source���� Furthermore� multilevel memory hi�
erarchies� distributed cache coherence protocols� su�
perscalar processors� and speculative instruction ex�
ecution dictate integration of software measurements
with detailed hardware performance data�

����� Deep Compiler Integration

To relate dynamic performance measurements of
compiler�synthesized code� performance analysis
tools must exploit deep knowledge� obtained from the
compiler� of the translation from the high�level� data
parallel source language to the low�level parallel code�
Concomitantly� the compiler must synthesize instru�
mentation during code generation�

In an ongoing� collaborative e�ort with the Rice
Fortran D group� we have explored performance data
correlation techniques that can invert a wide range of
compiler transformations� including loop interchange�
code motion� and communication synthesis ��� ���
During compilation� the Fortran D compiler emits

data on the sequence of source code transformations�
tying each synthesized code fragment to a portion of
the original data parallel source code�
During subsequent program execution� dynamic

performance data is obtained from an instrumented
version of the compiler�synthesized code� Because
this dynamic data also includes pointers to the orig�
inal data parallel code� a post�processing phase can
compute performance metrics and map these metrics
to the original data parallel source code� These met�
rics include both execution times and array reference
data locality� The latter relies on identifying each
compiler�synthesized message transmission as carry�
ing speci
c array segments�

����� SvPablo� Portable Analysis

Building on the insights obtained from our Rice col�
laboration� we have developed SvPablo ���� a graphi�
cal environment for instrumenting application source
code and browsing dynamic performance data� Sv�
Pablo supports performance data capture� analysis�
and presentation for applications written in a vari�
ety of languages and executing on both sequential
and parallel systems� In addition� SvPablo integrates
data from the hardware performance counters �
�� on
the MIPS R����� and SGI Origin �����

The SvPablo implementation relies on a single user
interface for performance instrumentation and visu�
alization� During the execution of the instrumented
code� the SvPablo library captures data and com�
putes performance metrics based on the execution
dynamics of each instrumented construct on each pro�
cessor� Because only statistics� rather than detailed
event traces� are maintained� the SvPablo library can
capture the execution behavior of codes that execute
for hours or days on hundreds of processors�

Following execution� performance data from each
processor is integrated� additional statistics are com�
puted� and the resulting metrics are correlated with
application source code� creating a performance �le
that is represented via the Pablo self�describing data
format �SDDF� ����� This performance 
le is the
speci
cation used by the SvPablo browser to display
application source code and correlated performance
metrics�
Using the Pablo SDDF metaformat has enabled us

to develop a user interface that is both portable and
language independent� Moreover� because all per�
formance metrics are de
ned in SDDF� the interface
is also performance metric independent� allowing us

�



to introduce new metrics or support new languages
without change to the user interface code�

Figure � shows the SvPablo interface� together with
code and performance data from an HPF program�
As the 
gure suggests� the SvPablo interface sup�
ports a hierarchy of performance displays� ranging
from color�coded routine pro
les to detailed data on
the behavior of a source code line�
Additional displays� not shown� allow one to ex�

amine detailed performance metrics for a particular
code fragment on each processor� Hence� one can 
rst
identify a bottleneck� then locate its cause by inter�
actively �drilling down� to explore increasing levels
of detail�

����� Symbolic Performance Prediction

Although integrated compilation and performance
measurement systems can relate dynamic perfor�
mance data frommeasured executions of transformed
code to the original data parallel source� they still re�
quire execution of complete programs� Often� this is
too late � performance problems are due to design
decisions made much earlier and can only be elimi�
nated by large scale changes� If� during program con�
struction� it were possible to estimate performance
scalability as a function of architectural parameters�
problem size� and number of processors� performance
tools could further lessen the high intellectual cost of
developing parallel applications by allowing applica�
tion developers to understand the performance impli�
cations of data parallel code constructs�

Important questions include determining how ap�
plication performance changes with variations in the
parallel system con
guration or application problem
size� and identifying which code fragments will be�
come the performance limiting bottlenecks as hard�
ware or application parameters change� These pre�
dictions need not be quantitatively exact� only quali�
tatively exact �i�e�� it is acceptable for the magnitude
of prediction errors to be as high as ����� percent
if the predictions accurately identify bottlenecks and
track their movements��

Based on this observation� we have extended the
Rice Fortran D�� compiler to emit performance scal�
ability predictions ��
� ��� for data parallel code�
In this approach� the data parallel compiler trans�
lates data parallel code and generates a symbolic cost
model for program execution time� representing the
scalability of each fragment in the original data par�
allel source�

N

0

32 128 512 2048

0.5

1.5

1.0

P = 16

Predicted Upper Bound

Predicted Lower Bound

Observed

T
im

e 
 (

se
co

nd
s)

Figure �� Symbolic Performance Prediction Example

As an example� Figure � shows a performance pre�
diction as a function of problem size N for a doubly
nested loop when executed on an Intel Paragon XP	S�
The compiler generates upper and lower bounds for
predicted execution time by considering extrema of
system�dependent constants �e�g�� memory references
times��

����� Research Directions

Integrated measurement and symbolic performance
prediction opens a rich� new set of opportunities for
compile�time optimization� Using a symbolic manip�
ulator� a compiler could create cost models for alter�
native code variants� evaluate the resulting expres�
sions for speci
c numbers of processors and problem
sizes� and synthesize the highest performance code
variants� By augmenting and validating these sym�
bolic models with dynamic performance data from
program executions� the compiler could incrementally
re
ne the quality of its predictions and code gener�
ation choices� In this model� compilation and per�
formance analysis are a closed loop� with both sym�
bolic performance predictions and quantitative mea�
surements guiding the compilation process�
Building on these observations� we are extending

our symbolic models and integrating them with the
SvPablo toolkit� In addition� we are incorporating
analytic and high�level simulation models for esti�

�



Figure �� SvPablo Performance Display �HPF Code�

�



mating the behavior of caches and memory hierar�
chies� all based on the Polaris parallelizing compiler
�
�� Our goal is to develop an integrated performance
modeling� measurement� analysis� and prediction en�
vironment that will allow application and system de�
velopers to explore the performance implications of
software and hardware design choices� both for ex�
tant systems and hypothetical ones�

��� Intelligent Data Reduction

As systems and applications increase in complex�
ity and heterogeneity� identifying performance bot�
tlenecks becomes commensurately more complex� In
such cases� performance bottlenecks may lie in in�
struction schedulers� memory hierarchy management�
wide area or local communication protocols� schedul�
ing algorithms� or application load balance� Con�
sequently� any performance instrumentation system
must capture a large number of performance met�
rics if post�mortem analysis is to successfully identify
the proximate and underlying causes of poor perfor�
mance�

As we noted in x�� event traces of these metrics pro�
vide the detailed data needed to understand software
component interactions� albeit potentially at great
cost� Thus� one faces a conundrum� event tracing
is desirable to understand detailed behavior� but the
potentially large data volume� large number of per�
formance metrics� and consequent behavioral pertur�
bations make it impractical for large� long�running
applications�

To retain the advantages of event tracing while
minimizing total data volume and perturbation� one
must reduce both the number of metrics needed
to identify bottlenecks and the number of locations
where data must be captured� To formalize this no�
tion and to provide a basis for analysis� consider a set
of n dynamic performance metrics� each measured on
a set of P parallel tasks�

Conceptually� one can then view an event trace
as de
ning a set of n dynamic performance metrics�
mi�t�� on each of P tasks

�m��t��m��t�� ����mn�t��p p � ����P �

that describe parallel system characteristics as a func�
tion of time t� Following ����� if Ri denotes the range
of metric mi�t�� we call the Cartesian product

M � R� �R� � ����Rn

a performance metric space� Thus� the ordered n�
tuples

�m��t� � R��m��t� � R�� ����mn�t� � Rn� ���

are points in M �t�� and the event trace de
nes the
temporal evolution of these P points in an n dimen�
sional space�
The goal of event trace data reduction is now clear

� one must reduce both the dimensionality of the
metric space �i�e�� reduce n� and the number of mea�
surement points �i�e�� reduce P �� Statistical cluster�
ing and projection pursuit address the 
rst and sec�
ond problems� respectively�

����� Statistical Clustering

Most programs written for parallel systems are ei�
ther single program multiple data �SPMD� �e�g�� us�
ing MPI�� data or object parallel �e�g�� using HPF
or parallel C���� or functional decompositions� In
the 
rst two cases� some variation of the same code
usually executes on all processors� with behavior dif�
ferentiated by data�dependent control �ow� In the
third case� code for each function executes on di�er�
ent collections of processors� However� regardless of
the programming model� processors executing simi�
lar code with similar data tend to form behavioral
equivalence classes� In the nomenclature of ���� the
processors or tasks executing similar code with com�
parable data trace similar trajectories in the metric
space�
Dynamic statistical clustering seeks to identify

clusters of processors� where the event metrics for
each processor in the cluster trace similar trajectories�
By periodically computing cluster membership using
performance metrics from each processor� an event
tracing system can capture and extract traces only
from representative members of each cluster� dramat�
ically reducing the total data volume �����
As an example of the possible data reduction due

to statistical clustering� consider an SPMD code that
relies on a master task to read initialization data and
allocate work to a set of N worker tasks� If the behav�
ior of all workers is similar� clustering identi
es two
clusters� one with cardinality one �the master� and a
second with cardinality N �the workers�� yielding a
total data reduction of nearly N �
Figure 
 shows an example of clustering applied

to event traces from a ��� processor execution of
a Hartree Fock quantum chemistry code on the In�
tel Paragon XP	S� see ���� for details� Clustering

�



groups behavior in a very small number of equiva�
lence classes� reducing the data volume by recording
trace data from only a few processors�

� ��� ��� ��� ��� ����

Execution time �seconds�

�

�

�




�

�

C
u
m
u
la
ti
ve
d
at
a
vo
lu
m
e
�M
B
�

��������������������������������������������������������
���������������
���������������
�����������������
�����������������������
���������������������
������������������
���������������
���������������
��������������������������������������

���������������
���������������
���������������
��������������������
�������������������������
�����������������������
��������������
���������������
��������������
�������������������������������������

���������������
���������������
������������������
������������������
�������������������������������
��������������
���������������
���������������
���������������������������������������

���������������������������������������������������������������

Raw

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������Clustered

Figure 
� Statistical Clustering Data Reduction

����� Multidimensional Projection Pursuit

Although statistical clustering can reduce the num�
ber of processors or tasks fromwhich event data must
be recorded� it does not reduce the number of met�
rics or �equivalently� the dimensionality of the metric
space� Even after clustering identi
es a small number
of processor representatives� the total data volume
may remain high� As an example� when analyzing
the performance of WWW servers ����� we found it
necessary to capture nearly 
fty metrics on request
types� processor� network� and memory usage to reli�
ably identify performance problems�
Principal component analysis and its statistical

variant� projection pursuit ��
�� seek to identify a sub�
set of the metrics that captures most of the statistical
variation� Intuitively� at any time t� many of the n
metrics are highly correlated� principal component
analysis and projection pursuit identify least corre�
lated metrics�
More formally� the n metrics ��� collectively de�


ne a vector basis for an n�dimensional coordinate
system� the n orthonormal unit vectors� Projection
pursuit identi
es a smaller set k of orthonormal vec�
tors� that are each linear combinations of the original

n vectors� The most important �i�e�� least correlated�
metrics are represented as the largest components of
the projection vectors
Clearly� the number of possible two or three�

dimensional projections of an n�dimensional space
can be large� Hence� projection pursuit minimizes
an index describing the projection �e�g�� in the
Friedman�Tukey model ��
�� the index measures clot�
tedness and the algorithm uses a general hill climbing
technique to generate new views of the subspace��

Typically� the dimensionality k of the projection is
two or three� one can visualize the projected metric
space using standard visualization techniques� More�
over� because the most important �i�e�� least corre�
lated� metrics are represented as the largest compo�
nents of the projection vectors� one can use the mag�
nitude of the components to select the metrics to be
recorded� reducing the total data volume� At present�
we are assessing the feasibility of this approach using
event traces captured from parallel systems�

����� Research Directions

Together� statistical clustering and projection pursuit
can dramatically reduce both the number of proces�
sors and metrics from which event traces must be
recorded� Implicit in such an approach is the need
for real�time clustering and projection� post�mortem
analysis requires the full trace� Indeed� in the Autopi�
lot model of x
��� real�time clustering and projection
pursuit control the frequency of sensor data transmis�
sion�

Not only must the overhead for clustering and pro�
jection be su�ciently low that they do not excessively
perturb the computation� they must track changes
in application behavior� If clustering and projec�
tion are applied too infrequently� the selected pro�
cessors and metrics may no longer be representative�
Conversely� if applied too frequently� the computa�
tional overhead may excessively perturb application
behavior� Hence� developing adaptive windowing al�
gorithms for triggering clustering and projection is a
key research problem�

Autopilot can dynamically adjust its monitoring
focus on the �y� given an appropriate and auto�
mated approach to selecting interesting views� Con�
sequently� by eliminating many uninteresting views�
data volume is reduced� Within this framework� the
challenge is to develop automated techniques that
preserve interesting system behaviors while simulta�
neously reducing data volume and application per�

�



turbation�

��� Domain Speci�c I�O Analysis

Although generic instrumentation and analysis sys�
tems can identify performance bottlenecks� they
rarely provide the tailored data and analysis needed
to understand speci
c resource domains or architec�
tures� In those areas with a su�ciently large com�
mercial base� independent software developers �ISVs�
successfully have 
lled this niche �e�g�� with tools
for network protocol analysis and tertiary storage
management� However� commercial tools for speci
c
high�performance computing domains are much less
common�
Of these domains� the poor performance of parallel

input	output systems has emerged as an often debili�
tating problem for many applications� Understanding
application input	output patterns is the 
rst step to
optimizing application performance with extant 
le
systems and to developing more e�ective parallel in�
put	output 
le system policies�

����� Scalable I�O Initiative

The Scalable I	O �SIO� Initiative is a broad�based
research program that includes application and sys�
tem input	output characterization� networking� 
le
systems� and 
le system application programming
interfaces �APIs�� compiler and language support�
and basic operating system services� Organized as

ve major working groups �performance character�
ization� operating systems� languages and runtime
systems� applications� and software integration� that
include application developers� academic researchers
and vendors� the goal of the initiative is identi
ca�
tion of parallel input	output problems and creation
of software solutions�
As part of the SIO Initiative� we have extended the

Pablo performance analysis toolkit to capture paral�
lel application input	output patterns and 
le system
responses and to compute I	O�speci
c performance
metrics� The most signi
cant observation from stud�
ies using this instrumentation ��� 
�� ��� 
�� 
�� 

�
is that scienti
c applications have input	output pat�
terns and requirements more complex than simple
stereotypes�
More speci
cally� our experimental data show that

there is wide variation in temporal and spatial access
patterns� including highly read�intensive and write�
intensive phases� extremely large and extremely small

request sizes� and both sequential and highly irreg�
ular access patterns� Moreover� we have observed
that the detailed spatial and temporal characteris�
tics of input	output patterns critically a�ect perfor�
mance� Even seemingly small variations have poten�
tially profound performance implications� This in�
sight motivated the development of input	output sys�
tems� described in x
��� that can adapt to changing
input	output patterns as well as creation of APIs for
parallel input	output ��� that allows users and high�
level libraries to specify future access patterns via
hints�

����� Multilevel I�O Libraries

Although the emergence of new parallel input	output
APIs like the SIO API and MPI�IO promise to pro�
vide a standard interface for parallel input	output�
most application developers prefer to manage data
on secondary storage via high�level input	output li�
braries like the NCSA Hierarchical Data Format
�HDF�� HDF is a multi�object 
le format for shar�
ing scienti
c data in heterogeneous� distributed en�
vironments� Via HDF routines� scientists can gener�
ate� manipulate� share� and visualize mesh and other
data representations without knowledge of data stor�
age formats or placements on parallel 
le systems

Because user requests via such libraries are poten�
tially mediated by several lower level input	output
libraries �e�g�� implementing the MPI�IO and SIO
APIs� before reaching the native 
le system� the po�
tential for overhead due to information loss on library
boundary crossings is high� Working in conjunction
with the application and library developers we are
extending our input	output characterization tools to
analyze the overhead introduced by the library layers�

These instrumentation extensions target both the
NCSA HDF library and the new MPI�IO standard�
In both cases� the instrumentation can produce either
timestamped event traces for post�mortem calculation
of statistical summaries or compute the summaries in
real�time� In either case� the summaries include the
number of calls made to each high�level routine� the
time spent in each routine� the time spent in low�level
input	output routines to satisfy the request� and time
spent in other library routines� The former allows
one to explore greater detail� albeit at the potential
expense of large event data volumes� Conversely� the
latter trades computation perturbation for reduced
event data volume�

As an example of the capabilities of this multi�level

�



User Internal
Metric HDF HDF UNIX

Count ��� ����
�� �
����
Time ���� ���� �����

Table �� HDF Routine Mix �Kleing Relativity�

input	output analysis� Table � shows the distribution
of input	output calls for an execution of a relativity
code on an SGI Power Challenge array� The table
shows that a small number of application HDF li�
brary invocations generated a large number of inter�
nal HDF and UNIX input	output invocations� More
detailed analysis shows that a substantial fraction of
the UNIX input	output invocations were 
le seeks�

This �hidden cost� due to lower level input	output
libraries is quite common � a modest number of high�
level access to large data blocks often translates to a
large number of non�sequential� smaller input	output
requests� Mitigating these e�ects is one of the goals
of intelligent library implementation�

����� Research Directions

Multi�level measurement of input	output libraries
raises a wealth of research questions concerning li�
brary interfaces and information sharing� access pat�
tern classi
cation and dynamic adaptation� and ter�
tiary storage integration� Only when critical access
pattern information is shared across library bound�
aries can low�level input	output libraries e�ectively
cache and prefetch data for use by higher layers�

��� Dynamic Policy Adaptation

Historically� performance analysis has been an it�
erative process� with performance analysts repeat�
edly instrumenting an application� analyzing cap�
tured performance data� and modifying the appli�
cation to alleviate identi
ed bottlenecks� With the
emergence of wide area computing and computational
grids� where the exact execution context may never
recur� performance data captured from one execution
may not highlight the critical performance issues for
subsequent executions�

Moreover� complex� multidisciplinary applications
with adaptive meshing� discipline�speci
c algorithm
interactions� and real�time analysis routines� exhibit
time dependent execution signatures� Experience has

shown that matching resource policies to time vary�
ing application behavior can greatly increase applica�
tion performance �e�g�� tuning input	output policies
for caching and prefetching can reduce application
input	output costs by an order of magnitude ������
Based on these observations� we believe the histor�

ical model of post�mortem performance analysis and
optimization must be subsumed by a new model of
real�time analysis and adaptive optimization� Such
adaptive systems respond to both changes in exe�
cution context and resource availability and to time
varying application resource demands� dynamically
adjusting resource policies to maximize achieved per�
formance�

����� Autopilot Adaptive Control System

Development of closed loop adaptive performance
analysis systems minimally requires three compo�
nents�

� intelligent decision procedures that determine
how and when the system should adjust resource
allocation policies and system parameters�

� distributed performance sensors that collect per�
formance data for decision procedures� and

� resource policy actuators that implement change
parameters and policies in response to decisions�

Below� we describe the design of Autopilot� a closed
loop performance measurement and adaptive control
system that includes these components�

Flexible Decision Procedures� Common deci�
sion procedure mechanisms like decision tables or
trees rely on a consistent division of the parame�
ter space� assigning policies and policy parameters
to each division� Likewise� controllers derived using
classic control theory are based on a rigorous mathe�
matical analysis of the underlying system� However�
the dynamic behavior of heterogeneous distributed
systems and irregular multidisciplinary applications
are too poorly understood to be amenable to either
of these control techniques�
In contrast� fuzzy logic targets precisely the at�

tributes of the resource management problem that
challenge classic techniques ����� namely con�icting
goals and poorly understood optimization spaces�
Autopilot builds on this observation by coupling a
con
gurable fuzzy logic rule base for distributed de�
cision making with wide area performance sensors

��



and policy control actuators� The rule base embodies
common sense rules for resource management �e�g��
aggressively prefetch 
le blocks for small� sequential
requests��

Performance Sensors� Autopilot�s performance
instrumentation is based on a set of distributed sen�
sors that extract information from the component
tasks of executing applications� In addition to the
standard requirements of low overhead and minimal
perturbation� sensors must accommodate wide area
computation where some of the tasks may execute
on remote systems with di�erent architectures than
the clients receiving the data�

The Autopilot sensor requirements are driven by a
desire to minimize application perturbation� reduce
communication frequency and volume� and maximize
�exibility� Based on these constraints� Autopilot sen�
sors support local data bu�ering and reduction� dy�
namic connection to remote tasks� and dynamic acti�
vation and removal�

Local data bu�ering and reduction �e�g�� com�
puting sliding window averages from measurements�
trades computation perturbation at the site of data
capture for reduced communication frequency and
data volume� Because data transmission is often the
most expensive part of data collection� local data re�
duction can dramatically decrease measurement per�
turbation�

Because the metrics needed to identify performance
bottlenecks and optimize applications change with
application behavior� decision mechanisms must be
able to dynamically activate and deactivate sensors
in response to changing conditions� Finally� because
source code is not always available� particularly for
proprietary software libraries� one of the Autopilot
sensor design goals is support for dynamic instru�
mentation� allowing sensors to be inserted or removed
from a program executable�

Policy Actuators� Resource policy actuators form
the 
nal component of the Autopilot triumvirate�
proving the mechanism to change application param�
eters or resource policies during execution� Driven
by the output of decision procedures� actuators have
many of the same properties as sensors� including lo�
cal computation and distributed activation�

����� Adaptive Parallel File Systems

As our extensive analysis of input	output dynamics
��� 
�� 
�� has shown� the parallel input	output pat�
terns in emerging applications are both irregular and
dynamic� Because the interactions between these ap�
plications and the 
le system software change dur�
ing and across application executions ����� it is di��
cult or impossible to determine a globally optimal
input	output con
guration or to statically con
g�
ure runtime systems and resource management poli�
cies for parallel input	output� Hence� parallel in�
put	output optimization provides an excellent test of
an adaptive� closed loop control system likeAutopilot�
Based on these experiences� we have designed and

started the implementation of a second generation
portable parallel 
le system� PPFS II� with real�
time� adaptive policy control� PPFS II is designed
to work atop either parallel systems or PC and work�
station clusters� providing a �exible testbed for high�
performance input	output experiments�
To explore automatic� qualitative classi
cation of

resource use� we have developed a suite of trained
arti
cial neural networks �ANNs� ���� and hidden
Markov models �HMMs� ���� that are implemented
as Autopilot sensors� ANNs can e�ciently classify ac�
cess streams in real�time� In contrast� HMMs build a
probabilistic model of the access pattern using prior
execution training� This generality allows HMMs to
classify arbitrary access patterns�
In addition to automatic behavioral classi
cation

techniques� PPFS also includes a �exible set of fuzzy
logic rules that can intelligently select 
le system poli�
cies based on input	output resource demands and
supplies� In this context� we are developing a set
of adaptive� dynamic policies to enhance the parallel
input	output system performance� including adap�
tive striping and dynamic storage redundancy� that
can trade storage space for increased input	output
bandwidth and balance con�icting resource demands
within and across applications�

����� Research Directions

Earlier� we argued that deep integration of perfor�
mance tools and compilation systems was necessary
to map dynamic performance data to application
source code� Because an increasing fraction of appli�
cations rely on proprietary software libraries where
source code is not available� comprehensive� dy�
namic instrumentation must include both compiler�
synthesized measurements and object code instru�

��



mentation� Although some binary rewriting tools can
capture instruction frequencies� relating this data to
source code is di�cult� Current practice is restricted
to object code instrumentation at procedure bound�
aries� and even this presumes limited procedure inlin�
ing� To enable comprehensive instrumentation� com�
pilers must record su�cient metadata for later object
code instrumentation even when source code is not
available�
To complement comprehensive instrumentation�

intelligent data acquisition� perhaps based on the sta�
tistical clustering and projection pursuit techniques
of x
��� are needed to dynamically adjust the types
and volume of performance data� Any adaptive re�
source management system must intelligently enable
and disable sensors to minimize data volume while
maintaining enough information to correctly detect
critical decision points�
We also see the role of performance analyst as

evolving from diagnosing individual performance
problems to creating rule bases and making critical
instrumentation decisions� Currently� there are no
formal methods or useful tools that support creation
and validation of rule sets for adaptive control� Fuzzy
logic seems promising� but new methods� such as neu�
ral networks and genetic algorithms� can also be used
to learn control rules and select membership func�
tions ����
Finally� while neural networks and hidden Markov

models have proven useful for input	output charac�
terization ����� other application resource characteri�
zations remain to be explored� Concurrently� better
techniques for identifying and exploiting global char�
acterizations must be developed�

��� Direct Manipulation

Although statistical clustering� projection pursuit�
and adaptive control techniques can all reduce per�
formance data volume and lessen the intellectual bur�
den of performance optimization� the application de�
veloper or performance analyst can gain insight only
by exploring the measured data� With rapidly rising
software complexity and system heterogeneity� this
has become an increasingly odious and tedious task�
Simply put� performance visualization and analysis

tools have not kept pace with the rapid rise in appli�
cation and system complexity� In contrast to the ac�
ceptance of immersive virtual environments for anal�
ysis of complex scienti
c data� simple static and dy�
namic workstation graphics remain the de facto stan�

dard for performance analysis� For performance ana�
lysts to e�ectively visualize and optimize the behavior
of tens of distributed parallel systems connected by
high�bandwidth networks� accessing distributed sec�
ondary and tertiary storage systems� and collectively
containing thousands of processors� new performance
visualization systems must more fully exploit human
sensory capabilities�

Not only has the number of factors that can a�ect
performance increased� e�ective performance tuning
of distributed applications often requires cooperative
exploration by a group of physically dispersed domain
experts �e�g�� networking� storage� scheduling� and ar�
chitecture�� Consequently� their analysis tools must
re�ect the collaborative� often asynchronous nature
of their work�

����� Virtue Performance Data Immersion

Although there are many possible designs for an im�
mersive performance environment� we believe all suc�
cessful designs will share the majority of the following
features�

� hierarchical views that can represent parallel
software components and their interactions�

� attribute controls for interactive modi
cation
and adjustment of software attributes and pa�
rameters�

� direct manipulation tools for modifying system
behavior during execution�

� multimedia annotation software for asyn�
chronous collaboration� and

� actualization interfaces that connect the virtual
environment with the external world� realizing
the e�ects of modi
cations�

These beliefs are buttressed by our experience with
virtual environment visualization of WWW tra�c
and parallel input	output �
���

Below� we describe the design of Virtue� a col�
laborative environment for immersive performance
analysis that embodies these design components� At
present� a prototype ofVirtue is operational� support�
ing three�dimensional visualization in the CAVE ����
but much work remains to complete implementation
of all design components�

��



Hierarchy and Abstraction� As we noted in x��
the key limitation of extant performance visualiza�
tion tools is their lack of scalability� To address this
problem� Virtue realizes abstract data as a hierar�
chy of embedded� three�dimensional graphs� Within
the virtual environment� one can interactively expand
and contract subgraphs to explore details at a partic�
ular site�
In this model� distributed computations are ini�

tially represented as geographic graphs whose vertices
represent speci
c computation sites and whose edges
represent intersite communication� By mapping per�
formance metrics to visual attributes like graph ver�
tices and edges� the geographic graph provides an
overview of the computation�
By selecting a speci
c site� one can expand the as�

sociated subgraph to see additional detail on the com�
putation at that site� Thus� this model of hierarchy
allows one to move from a geographic view� through
a single parallel system view� to a task graph or pro�
cedure call view on a speci
c processor�

Direct Manipulation Tools� Although a few per�
formance visualization systems accept real�time data
streams and display software behavior during exe�
cution� most rely on post�mortem data� In conse�
quence� performance data analysis and visualization
is a largely passive process � one cannot change pa�
rameters or policies of the application or underlying
system and see their e�ects except by modifying and
re�executing the code�
Virtue�s design is predicated on the belief that

users can best optimize performance by interacting
with virtual objects �i�e�� the hierarchical graphs rep�
resenting system components� just as they would ob�
jects in the physical world� This direct manipula�
tion model makes the user a participant in the per�
formance experiment rather than merely an observer�
Virtue graphs include manipulators �e�g�� 
�D slid�

ers and buttons� that are accessible via a tactile feed�
back data glove� By touching graph components� one
can expand or contract subgraphs and change the be�
havior of executing software �e�g�� toggling a caching
policy or changing a network packet size��

Distributed Collaboration� Just as computa�
tions increasingly involve distributed access to remote
resources� application software developers and per�
formance analysts are themselves often distributed�
For these groups to collaborative e�ectively� perfor�
mance visualization systems must be re�ective� al�

Immersive
Visualization

Sensor

Actuator

Parallel/Distributed
Computing System

Application

Attribute
Controls

Direct 
Manipulation
Tools

Figure �� Virtue and Autopilot Coupling

lowing distributed groups to share visualizations and
insights both synchronously and asynchronously� For
synchronous collaboration� live audio and video from
all participants are displayed within Virtue� allowing
them to cooperatively explore the graph hierarchy�
In contrast� asynchronous collaboration mandates

sharing across both time and space� by annotat�
ing interesting phenomenon with notes and insights
for later reference and exploration by collaborators�
Virtue includes a multimedia annotation system that
allows users to select objects in a Virtue graph�
and attach an audio	video annotation via voice com�
mands� When subsequent participants reactivate the
visualization� these annotations� denoted by icons at�
tached to graph objects� can be selected and replayed�

Remote Actualization� As we noted earlier� di�
rect manipulation allows users to change Virtue
graph representations and parameters� To realize the
e�ects of these changes� the virtual environment must
be coupled to the system from which data is being
captured� In Virtue this coupling or actualization is
via Autopilot actuators�

Just as Autopilot sensors provide the data sources
needed for real�time visualization in Virtue� actuators
provide the interface for realizing virtual environment
manipulations� As Figure � suggests� Virtue replaces
closed loop software control via fuzzy logic decision
procedures with interactive� adaptive control�

�




����� Research Directions

Immersive� three�dimensional visualization of soft�
ware structure and execution dynamics opens a wide
range of research problems in psychometrics and us�
ability� manipulation interfaces and controls� and
training of adaptive system software� In particu�
lar� understanding which mappings of performance
data to visual �e�g�� shape� color� placement� size�
and opacity�� sonic� and tactile attributes provide the
most insight is a key open problem�
Statistical techniques like clustering and projection

pursuit are natural complements to immersive visual�
ization� reducing the possible domain of exploration
and focusing attention on statistically relevant met�
rics� However� dynamic metric selection must be con�
strained by the need to maintain visual continuity for
human interaction�
Quite clearly� the time scale for interactive analy�

sis and resource policy optimization precludes certain
types of microscale optimization �e�g�� selecting syn�
chronization primitive policies on a millisecond time
scale�� However� it e�ectively supports macroscale
optimization �e�g�� 
le caching polices on a minute
or hour time scale�� Intelligently integrating software
control and adaptation with interactive optimization
will require balancing occasionally con�icting goals�
Finally� learning algorithms for software rule bases

could potentially generalize from examples of inter�
active optimization� Alternatively� users could inter�
actively adjust the parameters of extant rule bases�
In such a meta�optimization model� the virtual envi�
ronment is the substrate for con
guring closed loop
adaptive controls systems�

� Related Work

A large number of a priori performance prediction
and a posteriori performance measurement and anal�
ysis tools have been developed� targeting both se�
quential and parallel systems � far more than can be
summarized here� Notable examples include P�T ����
for performance prediction� together with Paradyn
���� and AIMS �
�� for performance measurement�
Each has exposed key research issues in performance
measurement and analysis�
Similarly� several systems have been built that sup�

port application behavior steering �i�e�� guiding a
computation toward interesting phenomena�� though
there have been fewer e�orts to interactively steer or
adaptively control application performance� Notable

examples include Leblanc�s ���� creation of an adap�
tive real�time system for robotic control that con�
sists of a multiprocessor executing a group of adap�
tive cognitive tasks and Schwan et al�s ��� develop�
ment of adaptive control mechanisms based on a sen�
sor	actuator model�
Performance data visualization has a long and sto�

ried history� though the explosion of interest in visu�
alization of parallel system behavior can be traced to
Seecube ���� Pablo ���� and ParaGraph ����� Virtual
environments for performance analysis ���� are less
common� though emerging immersive systems for dis�
tributed collaboration ���� target many of the same
problems�

� Conclusions

As parallel computing evolves from homogeneous par�
allel platforms and applications dominated by sin�
gle algorithms to heterogeneous collections of paral�
lel systems and multidisciplinary applications� per�
formance measurement� analysis� and optimization
problems continue to increase� With this rise in com�
plexity� performance measurement systems must con�
tinue to evolve� integrating performance data from
a wider range of sources and shifting from post�
mortem optimization to real�time adaptive manage�
ment� Concurrently� analysis and visualization sys�
tems must support the reality of distributed collabo�
ration and hierarchical visualization�

Acknowledgments

In addition to the contributions of the authors� this
work draws on the insights and hard work of many
past and present members of the Pablo research
group� most notably Thomas Kwan� Oleg Nickolayev�
Phil Roth� Luis Tavera� Will Scullin� and Evgenia
Smirni�

References

��� Adve� V�� Mellor�Crummey� J�� Wang� J��

C�� and Reed� D� Integrating Compilation
and Performance Analysis for Data�Parallel Pro�
grams� In Proceedings of Supercomputing���
�November ������

��� Adve� V� S�� Mellor�Crummey� J�� Ander�

son� M�� Kennedy� K�� Wang� J�� and Reed�

��



D� A� Integrating Compilation and Performance
Analysis for Data�Parallel Programs� In Proceed�
ings of the Workshop on Debugging and Perfor�
mance Tuning for Parallel Computing Systems�
M� L� Simmons� A� H� Hayes� D� A� Reed� and
J� Brown� Eds� IEEE Computer Society Press�
�����

�
� Blume� W�� Doallo� R�� Eigenmann� R��

Grout� J�� Hoeflinger� J�� Lawrence� T��

Lee� J�� Padua� D�� Paek� Y�� Pottenger�

W�� Rauchwerger� L�� and Tu� P� Paral�
lel Programming with Polaris� IEEE Computer
�Dec� ������

��� Corbett� P� F�� Prost� J��P�� Demetriou�
C�� Gibson� G�� Riedel� E�� Zelenka� J��

Chen� Y�� Felten� E�� Li� K�� Hartman�

J�� Peterson� L�� Bershad� B�� Wolman�

A�� and Aydt� R� Proposal for a Common
Parallel System Programming Interface Version
���� http���www�cs�arizona�edu�sio�api����ps�
Nov� �����

��� Couch� A� Graphical Representations of
Program Performance on Hypercube Message�
Passing Multiprocessors� PhD thesis� Tufts Uni�
versity� Department of Computer Science� �����

��� Crandall� P� E�� Aydt� R� A�� Chien�

A� A�� and Reed� D� A� Characterization of a
Suite of Input	Output Intensive Applications� In
Proceedings of Supercomputing ��� �Dec� ������

��� Cruz�Neira� C�� D�J�Sandin� and DeFanti�

T� Surround�Screen Projection�Based Virtual
Reality� The Design and Implementation of the
CAVE� In SIGGRAPH ��� Proceedings �Aug�
���
�� Association for Computing Machinery�

��� DeRose� L�� Zhang� Y�� and Aydt� R� Sv�
pablo� A Multi�Language Performance Analy�
sis System� In submitted for publication �Mar�
������

��� Eisenhauer� G�� Gu� W�� Schwan� K�� and

Mallavarupu� N� Falcon � Toward Inter�
active Parallel Programs� the Online Steering
of a Molecular Dynamic Program� In Proceed�
ings of the Third International Symposium on
High�Performance Distributed Computing �Aug�
������

���� Fahringer� T� Estimating and OptimizingPer�
formance for Parallel programs� IEEE Computer
�	� �� �November ������ ������

���� Graham� S�� Kessler� P�� and McKusick�

M� gprof� A Call Graph Execution Pro
ler�
In Proceedings of the SIGPLAN �	� Symposium
on Compiler Construction �Boston� MA� June
������ Association for Computing Machinery�
pp� ��������

���� Heath� M� T�� and Etheridge� J� A� Vi�
sualizing the Performance of Parallel Programs�
IEEE Software �Sept� ������ ���
��

��
� Hurley� C�� and Buja� A� Analyzing High�
dimensional Data with Motion Graphics� SIAM
Journal of Scienti�c and Statistical Computing


� � �Nov� ������ ���
������

���� Kasabov� N� K� Foundations of Neural Net�
works� Fuzzy Systems� and Knowledge Engineer�
ing� The MIT Press� �����

���� Kwan� T� T�� McGrath� R� E�� and Reed�

D� A� NCSA�s World Wide Web Server� Design
and Performance� IEEE Computer �Nov� ������
������

���� LeBlanc� T� J�� and Markatos� E� P� Op�
erating System Support for Adaptive Real�time
Systems� In Proceedings of the Seventh IEEE
Workshop on Real�Time Operating Systems and
Software �May ������ pp� �����

���� Leigh� J�� Johnson� A�� and DeFanti� T�

CAVERN� Distributed Architecture for Sup�
porting Persistence and Interoperability in Col�
laborative Virtual Environments� Virtual Real�
ity Research� Development and Applications �� �
�Dec� ������ �����
��

���� Loveman� D� B� High Performance Fortran�
IEEE Parallel � Distributed Technology 
� �
�February ���
�� ������

���� Madhyastha� T� M�� and Reed� D� A� Ex�
ploiting Global Input	Output Access Pattern
Classi
cation� In Proceedings of SC ��
� High
Performance Computing and Networking �San
Jose� Nov� ������ IEEE Computer Society Press�

���� Madhyastha� T� M�� and Reed� D� A� In�
put	Output Access Pattern Classi
cation Using
Hidden Markov Models� In Proceedings of the

��



Fifth Workshop on Input�Output in Parallel and
Distributed Systems �San Jose� CA� Nov� ������
ACM Press� pp� ������

���� Malony� A� D�� Reed� D� A�� Arendt�

J� W�� Aydt� R� A�� Grabas� D�� and

Totty� B� K� An Integrated Performance
Data Collection Analysis� and Visualization Sys�
tem� In Proceedings of the Fourth Conference on
Hypercube Concurrent Computers and Applica�
tions �Monterey� CA� Mar� ������ Association
for Computing Machinery�

���� Mendes� C� L� Performance Scalability Predic�
tion on Multicomputers� PhD thesis� University
of Illinois at Urbana�Champaign� May �����

��
� Mendes� C� L�� Wang� J��C�� and Reed�

D� A� Automatic Performance Prediction and
Scalability Analysis for Data Parallel Programs�
In Proceedings of the CRPC Workshop on Data
Layout and Performance Prediction �Houston�
April ������

���� Meredith� D� L�� Karr� C� L�� and Kamur�

K� K� The Use of Genetic Algorithms in the De�
sign of Fuzzy Logic Controllers� �rd Workshop
on Neural Networks WNN��� ������� ��������

���� Miller� B� P�� Callaghan� M� D��

Cargille� J� M�� Hollingsworth� J� K��

Irvin� R� B�� Karavanic� K� L�� Kunchitha�

padam� K�� and Newhall� T� The Paradyn
Parallel Performance Measurement Tools� IEEE
Computer �	� �� �November ������ 
�����

���� Nickolayev� O� Y�� Roth� P� C�� and Reed�
D� A� Real�time Statistical Clustering for Event
Trace Reduction� International Journal of Su�
percomputer Applications and High Performance
Computing �������

���� Osawa� N� An Enhanced 
�D Animation Tool
for Performance Tuning of Parallel Programs
based on Dynamic Models� In Proceedings of
the Symposium on Parallel and Distributed Tools
�July ������

���� Reed� D� A�� Aydt� R� A�� Noe� R� J��

Roth� P� C�� Shields� K� A�� Schwartz� B��

and Tavera� L� F� Scalable Performance Anal�
ysis� The Pablo Performance Analysis Environ�
ment� In Proceedings of the Scalable Parallel
Libraries Conference ����
�� A� Skjellum� Ed��
IEEE Computer Society�

���� Reed� D� A�� Elford� C� L�� Madhyastha�

T�� Scullin� W� H�� Aydt� R� A�� and

Smirni� E� I	O� Performance Analysis� and
Performance Data Immersion� In Proceedings of
MASCOTS ��� �Feb� ������ pp� �����

�
�� Reed� D� A�� Gardner� M� J�� and Smirni�

E� Performance Visualization� ��D� 
�D� and Be�
yond� In Proceedings of the IEEE International
Computer Performance and Dependability Sym�
posium �Sept� ������

�
�� Reed� D� A�� Shields� K� A�� Tavera� L� F��
Scullin� W� H�� and Elford� C� L� Virtual
Reality and Parallel Systems Performance Anal�
ysis� IEEE Computer �Nov� ������ ������

�
�� Simitci� H�� and Reed� D� A� A Compar�
ison of Logical and Physical Parallel I	O Pat�
terns� International Journal of Supercomputer
Applications and High Performance Computing
�to appear ������

�

� Smirni� E�� Elford� C� L�� and Reed� D� A�

Performance Modeling of a Parallel I	O System�
An Application Driven Approach� In Proceedings
of the Eighth SIAM Conference on Parallel Pro�
cessing for Scienti�c Computing �Mar� ������

�
�� Smirni� E�� and Reed� D� A� I	O Require�
ments of Scienti
c Applications� An Evolution�
ary View� In Proceedings of the Fifth IEEE
International Symposium on High�Performance
Distributed Computing �Aug� ������ pp� ������

�
�� Smirni� E�� and Reed� D� A� Workload Char�
acterization of Input	Output Intensive Paral�
lel Applications� In Proceedings of the �th In�
ternational Conference on Modelling Techniques
and Tools for Computer Performance Evaluation
�June ������

�
�� Yan� J� C�� Sarukkai� S� R�� and Mehra�

P� Performance Measurement� Visualization and
Modeling of Parallel and Distributed Programs
using the AIMS Toolkit� Software Practice �
Experience ��� � �April ������ ��������

�
�� Zagha� M�� Larson� B�� Turner� S�� and

Itzkowitz� M� Performance Analysis Using
the MIPS R����� Performance Counters� In
Proceedings of Supercomputing��� �November
������

��


